某某婚庆
一站式婚礼策划服务
干燥过程中,不考虑木材干缩的各向异性,并假定仅在木材厚度上发生水分移动,则厚度上含水率分布、应力与变形的变化可按四个阶段分析:
a.干燥初始尚未产生应力的阶段。此阶段中尽管表层含水率低,厚度上含水率分布不均,但都在纤维饱和点之上,不产生干缩,因而不产生应力。
b.干燥初期,应力外拉内压阶段。干燥过程开始后,木材表面自由水先蒸发,经过一段较短时间(取决于干燥介质的温度和相对湿度)后,表层含水率降到纤维饱和点之下,断面上含水率梯度增大、且出现“湿线”,“湿线”以外区域降到纤维饱和点以下,以内区域仍高于纤维饱和点。随着干燥的进行,“湿线”不断向内移动。
木材表层因含水率在纤维饱和点以下,所以要产生干缩,但内部各层含水率高于纤维饱和点、尺寸不变,因而牵制表层的干缩,故表层因该牵制受拉应力,内部则同时受压应力。又因为干燥初期木材横断面上,含水率降到纤维饱和点以下的区域较薄,相应受拉应力的区域较小,而受压应力的区域较大,且总拉力与总压力相平衡,所以,内部单位面积上的压应力较小,而表层单位面积上的拉应力相当大,且很快发展、达到较大拉应力,当该应力大于表层抗拉强度极限时,即产生裂纹。这也是干燥初期易产生表裂的主要原因。
由于木材是弹性-塑性体,当表层拉应力超过其比例极限时,就会产生塑性变形,或拉应力虽没超过比例极限,但受力时间长会产生蠕变,从而产生塑化固定。
随着干燥过程的进行,“湿线”不断内移,即表层以内的一些区域也逐渐降到纤维饱和点之下,受拉应力的区域逐渐扩大,而内部在纤维饱和点以上的受压应力作用的区域则逐渐减小。因此,表层单位面积上的拉应力逐渐减小,而内部单位面积上的压应力逐渐增大,并达到较大值,但内层压应力发展较慢。
c.干燥中期,内外应力暂时平衡阶段。该阶段表层由于严重的拉伸塑化固定,产生受限干缩,表层的梳齿长度比自由干缩应该达到的尺寸长。由于其属自由干缩或因压缩塑性变形而使其尺寸逐渐接近并暂时等于外层尺寸,这时木材中的内外层的应力暂时平衡。